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Y Roussigné and P Moch
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Abstract
In the dipolar approximation, we present an analytical study of the magnetic
modes occurring in a stripe submitted to a magnetic field H parallel to a principal
axis of its elliptical cross section. The studied excitations oscillate within the
cross section. The results differ greatly from those obtained in the previously
treated case of H parallel to the stripe direction. The dependences of the
frequencies upon the applied field are opposite below and above the saturation
field Hs, where Hs defines the limit between the oblique phase (H < Hs) and
the aligned one (H > Hs): the frequencies slow down until Hs, they vanish at
Hs and they increase above. This softening was previously observed on stripes
with a rectangular cross section and the measured critical field lies near the
saturation field, in agreement with our calculations.

1. Introduction

Many experimental and theoretical studies have been performed during recent years on spin
waves in magnetic stripes [1–10]. When the field is applied along the stripe, spin waves
oscillating within the cross section were observed and approximately described with the
help of an effective quantized wavevector Q ≈ nπ/w, where w is the width of the stripe
section, for w sufficiently larger than its thickness t ; n stands for any positive integer. In
addition, for this geometrical arrangement, a complete analytical approach is available in
the dipolar approximation, but only for an elliptical section [11]. When an in-plane field
is applied perpendicularly to the stripe, spin waves are also observed; they are described
through numerical approaches [3–9]. Some of the evidenced modes can be regarded as
quantized backward propagative excitations; others are appropriately described in terms of
modes localized near the edges of the rectangular section of the studied samples, a consequence
of the lack of homogeneity of the internal field. In the present paper we propose, in this
perpendicular geometry, a complete analytical approach for stripes with an elliptical cross
section, in the absence of anisotropy and of exchange. Indeed, the modes obtained using this
dipolar approximation are not localized, since the internal static magnetic field is uniform.
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In some sense, we show that they can be regarded as quantized backward modes. Our
analytical results enable us to present a physical discussion concerning the variations of the
eigenfrequencies as functions of the applied field.

2. Equations and notations

We study stripes with circular or elliptical cross section. At least concerning the static
equilibrium magnetization M, they can be considered as elongated ellipsoids parallel to the
z-direction, submitted to a magnetic field H applied in the x-direction of one of the principal
axes (length: 2a) of the elliptical cross section; the other axis (length: 2b) lies along the
y-direction. The circular case corresponds to a = b = R. The equilibrium equation can be
written

M × Hi = 0 (1)

where Hi stands for the internal field. The unique component of Hi is written as

Hi = H − 4πNx M with Nx = b/(a + b). (2)

(Notice that, in the case of any ellipsoid, one defines three demagnetizing factors Nx , Ny and
Nz with Nx + Ny + Nz = 1; here, Nz = 0, Nx = b/(a + b), Ny = a/(a + b)). Depending upon
the value of the applied field H , the stripe is unsaturated or saturated:

H < Hs = 4πNx M ⇒ unsaturated stripe:

Mx = H/(4πNx), Mz = (M2 − M2
x )

1/2, Hi = 0 (3a)

H > Hs = 4πNx M ⇒ saturated stripe:

Mx = M, Mz = 0, Hi = H − 4πNx M. (3b)

The dynamic magnetization m obeys the Landau Lifshitz equation. In the dipolar
approximation,

i�m = M × hi + m × Hi (4)

where � = ω/γ is the ratio of the pulsation to the gyromagnetic factor and where hi is the
dynamic demagnetizing field. In the quasi-static approximation, hi = ∇φ, where the potential
φ is related to the dynamic magnetization m by

∇ · (∇φ + 4πm) = 0. (5)

Outside of the magnetic object, the dynamic field is he = ∇ψ , where

�ψ = 0. (6)

Thus the boundary conditions are

ψ = φ (7a)

and

n · ∇ψ = n · (∇φ + 4πm) (7b)

where n is a vector normal to the boundary.
In the following we are interested with magnetic excitations non-propagating along the

z-axis, and, consequently, with oscillating excitations independent of z.
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3. Unsaturated stripes

We first study the eigenmodes of a circular cylinder, in order to introduce the physical features
of these excitations on this simple example. Then, following the same method, we derive
the eigenfrequencies in an elliptical stripe. Finally, we show that the uniform mode, which is
easily found directly, belongs to the set of our obtained solutions.

For unsaturated stripes, equation (4) simply reduces to

i�m = M × hi (8)

since Hi = 0.
It results from equations (5) and (8) that

�φ = 0. (9)

3.1. Circular cylinder

Suitable solutions for φ and ψ can be written as

φ = f0(r/R)n exp(inθ) (10a)

ψ = g0(R/r)n exp(inθ) (10b)

where n is any positive integer and where f0 and g0 are appropriate constants; the above
choice prevents the divergence of the potential. Using equation (8), it immediately results
from equations (7) that

� = 2πMz = ((2πM)2 − H 2)1/2. (11)

The frequency does not depend on the n value. It decreases from 2πM to 0 when H increases
from 0 to Hs = 2πM .

3.2. Elliptical section

We search for solutions with an angular dependence proportional to exp(inθ) on the stripe
boundary (a cos θ, b sin θ). Inside of the stripe the functions of the form

φ = f1(x + iy + ((x + iy)2 − a2 + b2)1/2)n + f2(x − iy + ((x − iy)2 − a2 + b2)1/2)n (12)

adequately fit the above condition. Here, and in the following, the defined square root is
positive when it is real or shows a positive imaginary part when it is complex. Outside of the
stripe, to prevent the divergence of the potential at infinity, one has to choose:

for y < 0 ψ = g(x + iy + ((x + iy)2 − a2 + b2)1/2)n (13a)

for y > 0 ψ = g(x − iy + ((x − iy)2 − a2 + b2)1/2)n . (13b)

The boundary conditions provide relations between the three constants f1, f2 and g. Finally,
it results that

� = 2πMz(1 − ((a − b)/(a + b))2n)1/2

with: 2πMz = ((2πM)2 − (H (a + b)/2b)2)1/2. (14)

Now the frequency depends on n. It decreases from 2πM(1 − ((a − b)/(a + b))2n)1/2 to 0
when H increases from 0 to Hs.

It is important to point out that the chosen form for φ in equation (12) leads to an non-
physical divergency of the oscillating magnetization at the points {x = ±(a2 − b2)1/2, y = 0},
i.e. at the focuses of the elliptic cross section: the components of m being related to the
derivative of φ versus x or versus y, they automatically diverge at these points. As a result,
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it is not possible to derive the profiles of the studied modes with the help of the obtained
expressions for ∂φ/∂x and ∂φ/∂y. Anyway, the above formalism correctly accounts for the
frequencies [10], as often verified using, for instance, numerical calculations based on the
finite elements method [1, 6, 9]. Indeed, the numerical methods also allow us to estimate the
profiles [9].

3.3. The uniform mode

For an ellipsoid, one of the exact solutions of the spin waves problem consists in an uniform
mode. It is immediately found from the equation of motion (8) in the unsaturated case, noticing
that hix = −4πNx mx , hiy = −4πNym y , hiz = −4πNzmz . The obtained frequency

� = 4πMz((Ny − Nz)(Nx − Nz))
1/2 with Mz = (M2 − (H/(4π(Nx − Nz)))

2)1/2

(15)

provides for the studied case of a cylinder (Nz = 0):

� = 4πMz(Ny Nx )
1/2 with Mz = (M2 − (H/4πNx)

2)1/2 (16)

which can be written

� = ((2πM)2 − (H (a + b)/2b)2)1/2(4ab/(a + b)2)1/2. (17)

This is the solution provided by equation (11) in a circular cylinder and by equation (14) in an
elliptical cylinder for the mode n = 1. In addition, we have now established that it is uniform;
consequently, it should be easily observable on applying a uniform rf field.

4. Saturated stripes

4.1. General study

The case of a circular cylinder does not provide any significant simplification. Indeed, it is
simply an instance of the general problem of an elliptic section assuming a = b = R.

The presence of a static internal field prevents�φ from vanishing. Defining λ by

λ2 = 4πM Hi/(�
2 − H 2

i )− 1 (18)

it results from equations (4) and (5) that

∂2φ/∂x2 − λ2∂2φ/∂y2 = 0. (19)

The general solution of equation (9) is a linear combination of two functions of (λx + y) and
(λx − y), respectively. Again, we search for potentials φ and ψ with an angular dependence
proportional to exp(inθ) on the stripe boundary. Inside the stripe,

φ = f1(λx + y + i(−(λx + y)2 + λ2a2 + b2)1/2)n

+ f2(λx − y + i(−(λx − y)2 + λ2a2 + b2)1/2)n (20)

while, outside the stripe, ψ remains given by equations (13). The boundary conditions give

((λ− i)/(λ + i))2 = ((λa + ib)/(λa − ib))2n . (21)

Introducing α by

tan[α] = (b/aλ) (22)

equation (21) is equivalent to

tan[α] = −(b/a) tan[nα] (23a)
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Figure 1. Field dependence of the frequencies of spin waves in a stripe with a circular cross section.
Above Hs, for each n value there are (n + 1) distinct branches (see the text). Here, n = 3.

or

tan[α] = (b/a) cot[nα]. (23b)

The solutions of equations (23a) and (23b) provide the frequencies of the magnetic modes:

� = (H 2
i + 4πM Hi/(1 + λ2))1/2 = (H 2

i + 4πM Hia
2/(a2 + b2(cot[α])2))1/2 (24)

with:

Hi = H − 4π(b/(a + b))M. (25)

The set of equations (23) generally shows (n + 1) solutions (including α = 0, which gives rise
to the frequency Hi).

Here again let us notice that the chosen form of φ in equation (20) prevents its use for the
evaluation of the profiles, as a consequence of non-physical divergencies occurring on the four
lines

y = ±(b/ tan[α])(x/a ± (1 + (tan[α])2)0.5) (26)

which are tangential to the ellipse defining the cross section.
For every mode the frequency vanishes at H = Hs and increases versus H . The solutions

of equation (23a) correspond to f2 = f1 (even solutions), while the solutions of equation (23b)
provide f2 = − f1 (odd solutions). The increasing (n + 1) values of α alternate solutions of
equation (23a) and of equation (23b). The symmetry properties of each mode depend upon the
involved equations ((23a) or (23b)) and upon the parity of n. The behaviour of the components
of the oscillating magnetization when changing x into −x and/or y into −y are listed in table 1.
Examples of frequency variations versus H are shown in figures 1 and 2 for various geometries
(circular cylinder and elliptical cylinder with b/a = 1/9). The symmetry properties of the
modes are correctly described but, as noticed above, the profiles have to be found using a
numerical method. In figure 3, we show some profiles for |mx |2 and |m y |2 that we obtain using
a previously described technique of finite elements [9].

Finally, in view of a qualitative discussion concerning the studied excitations, it is
interesting to regard them as approximately described by propagative waves showing a
quantized wavevector Q‖. For other different geometrical arrangements, the validity of such
an approach was previously experimentally and numerically [1–4] justified in the case of
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Figure 2. Field dependence of the frequencies of spin waves in a stripe with an elliptic cross section
(b/a = 1/9). Above Hs, for each n value, there are (n + 1) distinct branches (see the text). Here,
n = 3. With the chosen value of b/a, the two highest branches are practically identical.

Unsaturated

H = 2 √

 √

2  M b/(a+b)

a = 9b

n = 3

Mx = Mz= M/ 2
⇒ 

⇒ 

Ω 

Ω 

/4 M = 0.6014

Saturated

H = 2 π

 π

 π

 π

M

a = 9b

n = 3, lowest odd mode

Mx = M , Mz= 0

 /4 M = 0.7408

|my|
2 |mx|

2  |mz|
2

|my|
2  |mz|

2

Figure 3. Dynamic magnetization profiles calculated using a finite elements method [9]. The b/a
ratio used for calculations (b/a = 1/9) is amplified in the pictures. Top line: unsaturated case;
|my |2 (left) and |mz |2 (right) variations are shown for n = 3 with H/4πM = b/((a + b)

√
2); it

is easy to prove that mx/mz is constant across the section. Bottom line: saturated case; the |mz|2
variation is shown for n = 3 with H/4πM = 0.5; it is easy to prove that mx vanishes and that
my/mz is constant across the section.

(This figure is in colour only in the electronic version)
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Table 1. Symmetries of the components of the oscillating magnetization for the spin waves in a
saturated stripe.

x → −x y → −y

n = 2p, even modes my → my , mz → −mz my → −my , mz → −mz

n = 2p, odd modes my → −my , mz → mz my → my , mz → mz

n = 2p + 1, even modes my → −my , mz → mz my → −my , mz → −mz

n = 2p + 1, odd modes my → my , mz → −mz my → my , mz → mz

rectangular cross section and was theoretically demonstrated in the case of elliptical cross
section: in the first case the allowed values of Q‖ do not markedly differ from nπ/w; a
naive extrapolation leads to quantized wavevectors equal to 2nπ/a for an elliptical section,
but rigorous calculation provides a significantly different result, namely n/a. In the cases
mentioned above, Q‖ was perpendicular to the internal field and the frequency dispersion of
the comparative continuous film was appropriate to this geometry. In the present geometrical
arrangement where the magnetic oscillation takes place in the plane of the cross section, the
required comparative dispersion corresponds to a wavevector Q‖ parallel to the internal field
Hi and is associated to backward propagative spin waves in a continuous film. Its expression
can be written [12]

� = (H 2
i + 4πM Hi/(1 + (tan[t Q⊥/2])2))1/2 (27)

where the quantity Q⊥ is the solution of the equation

tan[t Q⊥/2] = Q‖/Q⊥. (28)

Equations (24) and (27) become identical if

(b/a) cot[α] = tan[t Q⊥/2]. (29)

Identifying t/2 with b and assuming that α and (bQ⊥) have small values, it results from
equations (28) and (29) that

Q‖ ≈ bQ2
⊥ ≈ b/(a2α2). (30)

The solutions corresponding to equation (23b) ensure, for small values of α,

α ≈ (b/na)1/2. (31)

Hence, finally one finds

Q‖ ≈ n/a = 2n/w. (32)

The effective quantized wavevector has the same expression as in the previously studied
geometry. However, this correspondence is less useful for the presently discussed parallel
geometry than for the perpendicular one. In this last case the continuous film shows only
one dispersion curve: any mode in the film is completely defined when Q‖ is specified and
any mode in the stripe is completely defined when n is specified; the appropriate quantization
of Q‖ provides a complete description of the stripe modes. In the parallel geometry such a
bi-univocal relation does not subsist: first, in the stripe any n value gives rise to (n + 1) distinct
modes and, second, in the continuous film it is evident from relation (28) that any Q‖ value
gives rise to an infinite set of solutions for Q⊥ and, consequently, to an infinite set of modes.
Strictly speaking, the one to one correspondence is lost.
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4.2. The uniform mode

For the saturated case, the uniform mode is easily found, in the same way as for the unsaturated
case: for a cylinder (Nz = 0) one immediately finds

� = ((H + 4π(Ny − Nx )M)(H − 4πNx M))1/2. (33)

It results that

� = ((H + 4πM(a − b)/(a + b))(H − 4πMb/(a + b)))1/2. (34)

We find the frequency given by equation (24) for an odd mode (equation (23b)) in the case
n = 1. The uniform mode belongs to the whole calculated set of solutions, as expected. Here
again, in principle, such a profile is suspected to allow an easy observation on applying a rf
uniform magnetic field.

5. Conclusion

The exact calculations performed in the simplified case of a stripe showing an elliptical
cross section in the dipolar approximation provide a qualitative tool to discuss the available
experimental data related to the nearby situations encountered with rectangular cross sections.
For the studied parallel geometry, the most striking effect is the softening of the modes in the
vicinity of the saturation field. Above this saturation field, the increase of the number of distinct
modes is put in evidence. The pseudo-backward character also appears. All these effects have
been experimentally observed [7, 8]. For our part, we have recently obtained preliminary results
on the softening, using Brillouin scattering in permalloy stripes; a complete experimental study
will be published in the future.
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